搞懂Tomcat配置参数

/ 后端 / 没有评论 / 391浏览

一、Nio、Bio、APR

1、Connector的protocol

Connector在处理HTTP请求时,会使用不同的protocol。不同的Tomcat版本支持的protocol不同,其中最典型的protocol包括BIO、NIO和APR(Tomcat7中支持这3种,Tomcat8增加了对NIO2的支持,而到了Tomcat8.5和Tomcat9.0,则去掉了对BIO的支持)。

BIO是Blocking IO,顾名思义是阻塞的IO;NIO是Non-blocking IO,则是非阻塞的IO。而APR是Apache Portable Runtime,是Apache可移植运行库,利用本地库可以实现高可扩展性、高性能;Apr是在Tomcat上运行高并发应用的首选模式,但是需要安装apr、apr-utils、tomcat-native等包。

2、如何指定protocol

Connector使用哪种protocol,可以通过元素中的protocol属性进行指定,也可以使用默认值指定的protocol取值及对应的协议如下:

HTTP/1.1:默认值,使用的协议与Tomcat版本有关

org.apache.coyote.http11.Http11Protocol:BIO org.apache.coyote.http11.Http11NioProtocol:NIO org.apache.coyote.http11.Http11Nio2Protocol:NIO2 org.apache.coyote.http11.Http11AprProtocol:APR

如果没有指定protocol,则使用默认值HTTP/1.1,其含义如下:在Tomcat7中,自动选取使用BIO或APR(如果找到APR需要的本地库,则使用APR,否则使用BIO);在Tomcat8中,自动选取使用NIO或APR(如果找到APR需要的本地库,则使用APR,否则使用NIO)。

3、BIO/NIO有何不同

无论是BIO,还是NIO,Connector处理请求的大致流程是一样的:

在accept队列中接收连接(当客户端向服务器发送请求时,如果客户端与OS完成三次握手建立了连接,则OS将该连接放入accept队列);在连接中获取请求的数据,生成request;调用servlet容器处理请求;返回response。为了便于后面的说明,首先明确一下连接与请求的关系:连接是TCP层面的(传输层),对应socket;请求是HTTP层面的(应用层),必须依赖于TCP的连接实现;一个TCP连接中可能传输多个HTTP请求。

在BIO实现的Connector中,处理请求的主要实体是JIoEndpoint对象。JIoEndpoint维护了Acceptor和Worker:Acceptor接收socket,然后从Worker线程池中找出空闲的线程处理socket,如果worker线程池没有空闲线程,则Acceptor将阻塞。其中Worker是Tomcat自带的线程池,如果通过配置了其他线程池,原理与Worker类似。

在NIO实现的Connector中,处理请求的主要实体是NIoEndpoint对象。NIoEndpoint中除了包含Acceptor和Worker外,还使用了Poller,处理流程如下图所示

Acceptor接收socket后,不是直接使用Worker中的线程处理请求,而是先将请求发送给了Poller,而Poller是实现NIO的关键。Acceptor向Poller发送请求通过队列实现,使用了典型的生产者-消费者模式。在Poller中,维护了一个Selector对象;当Poller从队列中取出socket后,注册到该Selector中;然后通过遍历Selector,找出其中可读的socket,并使用Worker中的线程处理相应请求。与BIO类似,Worker也可以被自定义的线程池代替。

通过上述过程可以看出,在NIoEndpoint处理请求的过程中,无论是Acceptor接收socket,还是线程处理请求,使用的仍然是阻塞方式;但在“读取socket并交给Worker中的线程”的这个过程中,使用非阻塞的NIO实现,这是NIO模式与BIO模式的最主要区别(其他区别对性能影响较小,暂时略去不提)。而这个区别,在并发量较大的情形下可以带来Tomcat效率的显著提升:

目前大多数HTTP请求使用的是长连接(HTTP/1.1默认keep-alive为true),而长连接意味着,一个TCP的socket在当前请求结束后,如果没有新的请求到来,socket不会立马释放,而是等timeout后再释放。如果使用BIO,“读取socket并交给Worker中的线程”这个过程是阻塞的,也就意味着在socket等待下一个请求或等待释放的过程中,处理这个socket的工作线程会一直被占用,无法释放;因此Tomcat可以同时处理的socket数目不能超过最大线程数,性能受到了极大限制。而使用NIO,“读取socket并交给Worker中的线程”这个过程是非阻塞的,当socket在等待下一个请求或等待释放时,并不会占用工作线程,因此Tomcat可以同时处理的socket数目远大于最大线程数,并发性能大大提高。

二、3个参数:acceptCount、maxConnections、maxThreads

再回顾一下Tomcat处理请求的过程:在accept队列中接收连接(当客户端向服务器发送请求时,如果客户端与OS完成三次握手建立了连接,则OS将该连接放入accept队列);在连接中获取请求的数据,生成request;调用servlet容器处理请求;返回response。

相对应的,Connector中的几个参数功能如下:

源码来自NioEndpoint的startInternal方法:

 /**
     * Start the NIO endpoint, creating acceptor, poller threads.
     */
    @Override
    public void startInternal() throws Exception {

        if (!running) {
            running = true;
            paused = false;

            if (socketProperties.getProcessorCache() != 0) {
                processorCache = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,
                        socketProperties.getProcessorCache());
            }
            if (socketProperties.getEventCache() != 0) {
                eventCache = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,
                        socketProperties.getEventCache());
            }
            if (socketProperties.getBufferPool() != 0) {
                nioChannels = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,
                        socketProperties.getBufferPool());
            }

            // Create worker collection
            if (getExecutor() == null) {
                createExecutor();
            }
    
            //通过maxConnections初始化最大连接限制
            initializeConnectionLatch();
        
            //处理有效连接的线程
            // Start poller thread
            poller = new Poller();
            Thread pollerThread = new Thread(poller, getName() + "-ClientPoller");
            pollerThread.setPriority(threadPriority);
            pollerThread.setDaemon(true);
            pollerThread.start();
        
            //监控连接,有事件后会添加到Poller的队列等待进行处理
            startAcceptorThread();
        }
    }

1、acceptCount

达到操作系统为传入连接请求提供的队列的最大长度maxConnections。操作系统可能会忽略此设置并为队列使用不同的大小。当此队列已满时,操作系统可能会主动拒绝其他连接,或者这些连接可能会超时。默认值为100。

可见这个参数是给操作系统用的;

2、maxConnections

Tomcat在任意时刻接收和处理的最大连接数。当Tomcat接收的连接数达到maxConnections时,Acceptor线程不会读取accept队列中的连接;这时accept队列中的线程会一直阻塞着,直到Tomcat接收的连接数小于maxConnections。如果设置为-1,则连接数不受限制。

源码来自Acceptor下面的run方法:

                    //控制最大连接数
                    //if we have reached max connections, wait
                    endpoint.countUpOrAwaitConnection();

                    // Endpoint might have been paused while waiting for latch
                    // If that is the case, don't accept new connections
                    if (endpoint.isPaused()) {
                        continue;
                    }

默认值与连接器使用的协议有关:NIO的默认值是10000,APR/native的默认值是8192,而BIO的默认值为maxThreads(如果配置了Executor,则默认值是Executor的maxThreads)。

在windows下,APR/native的maxConnections值会自动调整为设置值以下最大的1024的整数倍;如设置为2000,则最大值实际是1024。

3、maxThreads

请求处理线程的最大数量。默认值是200(Tomcat7和8都是的)。如果该Connector绑定了Executor,这个值会被忽略,因为该Connector将使用绑定的Executor,而不是内置的线程池来执行任务。

maxThreads规定的是最大的线程数目,并不是实际running的CPU数量;实际上,maxThreads的大小比CPU核心数量要大得多。这是因为,处理请求的线程真正用于计算的时间可能很少,大多数时间可能在阻塞,如等待数据库返回数据、等待硬盘读写数据等。因此,在某一时刻,只有少数的线程真正的在使用物理CPU,大多数线程都在等待;因此线程数远大于物理核心数才是合理的。

换句话说,Tomcat通过使用比CPU核心数量多得多的线程数,可以使CPU忙碌起来,大大提高CPU的利用率。

源码来自Pollerde的run方法:

                // Walk through the collection of ready keys and dispatch
                // any active event.
                while (iterator != null && iterator.hasNext()) {
                    SelectionKey sk = iterator.next();
                    iterator.remove();
                    NioSocketWrapper socketWrapper = (NioSocketWrapper) sk.attachment();
                    // Attachment may be null if another thread has called
                    // cancelledKey()
                    if (socketWrapper != null) {
                        processKey(sk, socketWrapper);
                    }
                }

最终来到了SocketWrapperBase的process方法,进行分配工作线程真正处理业务:

  protected boolean process() {
            try {
                getEndpoint().getExecutor().execute(this);
                return true;
            } catch (RejectedExecutionException ree) {
                log.warn(sm.getString("endpoint.executor.fail", SocketWrapperBase.this) , ree);
            } catch (Throwable t) {
                ExceptionUtils.handleThrowable(t);
                // This means we got an OOM or similar creating a thread, or that
                // the pool and its queue are full
                log.error(sm.getString("endpoint.process.fail"), t);
            }
            return false;
        }

4、参数设置

使用异步servlet,其实就是快速反还工作线程,使用私有的线程去处理业务,此时一直持有连接,可以进行response返回数据;

(1)maxThreads的设置既与应用的特点有关,也与服务器的CPU核心数量有关。通过前面介绍可以知道,maxThreads数量应该远大于CPU核心数量;而且CPU核心数越大,maxThreads应该越大;应用中CPU越不密集(IO越密集),maxThreads应该越大,以便能够充分利用CPU。当然,maxThreads的值并不是越大越好,如果maxThreads过大,那么CPU会花费大量的时间用于线程的切换,整体效率会降低。

(2)maxConnections的设置与Tomcat的运行模式有关。如果tomcat使用的是BIO,那么maxConnections的值应该与maxThreads一致;如果tomcat使用的是NIO,maxConnections值应该远大于maxThreads。

(3)通过前面的介绍可以知道,虽然tomcat同时可以处理的连接数目是maxConnections,但服务器中可以同时接收的连接数为maxConnections+acceptCount 。acceptCount的设置,与应用在连接过高情况下希望做出什么反应有关系。如果设置过大,后面进入的请求等待时间会很长;如果设置过小,后面进入的请求立马返回connection refused。

四 看连接状态

1.连接数 假设Tomcat接收http请求的端口是8083,则可以使用如下语句查看连接情况:

netstat –nat | grep 8083 可以看出,有一个连接处于listen状态,监听请求;除此之外,还有4个已经建立的连接(ESTABLISHED)和2个等待关闭的连接(CLOSE_WAIT)。